Torsion points of abelian varieties with values in infinite extensions over a p-adic field

Yoshiyasu Ozeki *

1 Introduction

Let A be an abelian variety over a field K. For an algebraic field extension L over K, we are interested in the problem whether the torsion part $A(L)_{\text{tors}}$ of L-rational points $A(L)$ of A is finite or not. Let us consider the following two cases:

1. (Global case) K is a finite extension of \mathbb{Q}.
2. (Local case) K is a finite extension of a p-adic field \mathbb{Q}_p.

If L is a finite extension over K, it is well-known that the torsion part of the group $A(L)_{\text{tors}}$ is finite (cf. [Mat], Thm. 7) in both cases. On the other hand, in general, we do not know whether $A(L)_{\text{tors}}$ is finite or infinite if L is an infinite algebraic extension over K.

In this talk we deduce some of results related with such a finiteness problem for $A(L)_{\text{tors}}$. Our results in this paper is given in Theorem 2.2, Theorem 2.3, Corollary 3.9 and Corollary 3.10 bellow.

2 Finiteness of torsion points in the local case

In this section, we consider the finiteness of $A(L)_{\text{tors}}$ under the local case, that is, K is a finite extension of \mathbb{Q}_p. In this case there are not many results than the global case. Some of known results in the global case are given in the next section.

As a well-known fact, Imai proved the following, which is a straightforward generalization of Theorem 3.1.

Theorem 2.1 (Imai [Im]). If A has potential good reduction over K, then $A(K(\mu_\infty))_{\text{tors}}$ is finite.

By connecting this theorem, Theorem 3.1 and Theorem 3.2, it seems to be natural to hope that $A(K(\mu_\infty))_{\text{tors}}$ is finite. Unfortunately, by the following theorem, $A(K(\mu_\infty))_{\text{tors}}$ can be an infinite group for some abelian variety A, even if we assume that A has good reduction.

Theorem 2.2. Let A be an abelian variety over K which has potential ordinary good reduction. Let L be an algebraic extension of K with residue field k_L.

*Graduate School of Mathematics, Kyushu University
e-mail : y-ozeki@math.kyushu-u.ac.jp*
(1) Assume that the residue field of \(L(\mu_p^\infty) \) is a potential prime-to-\(p \) extension of \(k \) (in the sense below). Then \(A(L)[p^\infty] \) is finite.

(2) If \(L \) contains \(K(A[p]) \) and \(K(\mu_p^\infty) \), then \(k_L \) is a potential prime-to-\(p \) extension of \(k \) if and only if \(A(L)[p^\infty] \) is finite.

(3) Assume that \(L(\mu_p^\infty) \) is a Galois extension of \(K \) whose residue field is finite. Then \(A(L)[p^\infty] \) tors is finite.

Here we say that the field extension \(F \) over \(E \) is a potential prime-to-\(p \) extension if \(F \) is a union of finite extensions of degree prime-to-\(p \) over some finite extension of \(E \). By using this theorem, we can obtain the global case of this theorem immediately, see the last statement of this paper.

Next we consider the finiteness of \(A(L)[p^\infty] \) tors for some \(p \)-adic Lie extension \(L \) over \(K \). Let \(B \) be an semi-abelian variety over \(K \). We denote by \(K_B,p = K(\beta[p^\infty]) \) the field generated by the coordinates of all \(p \)-power torsion points of \(B \). For example \(K_{\mathbb{G}_m,p} \) is the cyclotomic field \(K(\mu_p^\infty) \) and hence Imai’s theorem is a result on the torsion points of \(A(K_{\mathbb{G}_m,p}) \). We now suppose \(A = E_1 \) and \(B = E_2 \) are elliptic curves and consider \(E_1(K_{E_2,p})[p^\infty] \). We shall note that, for any prime \(\ell \neq p \), the group \(E_1(K_{E_2,p})[\ell^\infty] \) is always finite since \(K_{E_1,\ell} \) is a pro-\(\ell \)-extension over some finite extension of \(K \).

Theorem 2.3. The finiteness of \(E_1(K_{E_2,p})[p^\infty] \) is as follows:

<table>
<thead>
<tr>
<th>(E_1)</th>
<th>(E_2)</th>
<th># (E_1(K_{E_2,p})[p^\infty])</th>
</tr>
</thead>
<tbody>
<tr>
<td>ord</td>
<td>ord</td>
<td>(\infty) (\ast_1)</td>
</tr>
<tr>
<td>ss</td>
<td>ss</td>
<td>finite</td>
</tr>
<tr>
<td>mult</td>
<td>mult</td>
<td>finite</td>
</tr>
<tr>
<td>FCM</td>
<td>ord</td>
<td>CM</td>
</tr>
<tr>
<td>ss</td>
<td>non-CM</td>
<td>finite</td>
</tr>
<tr>
<td>non-FCM</td>
<td>ss</td>
<td>FCM</td>
</tr>
<tr>
<td>split mult</td>
<td>any</td>
<td>(\ast_3) finite</td>
</tr>
<tr>
<td>non-split mult</td>
<td>any</td>
<td>(\ast_3) finite</td>
</tr>
</tbody>
</table>

Here “ord”, “ss”, “mult”, “CM” and “FCM” in the above table stand for ordinary, supersingular, multiplicative, complex multiplication and formal complex multiplication, respectively. The symbols \(\ast_1, \ast_2 \) and \(\ast_3 \) in the table imply the followings:

\(\ast_1 \cdot \cdot \cdot \): ordinary good reduction
\(\Rightarrow E_1(K_{E_2,p})[p^\infty] \) is infinite in many cases.

\(\ast_2 \cdot \cdot \cdot \): supersingular good reduction with formal complex multiplication
\(E_2 \): ordinary good reduction with complex multiplication
\(\Rightarrow E_1(K_{E_2,p})[p^\infty] \) is finite in all cases.

\(\ast_3 \cdot \cdot \cdot \): supersingular good reduction without formal complex multiplication
\(\Rightarrow E_1(K_{E_2,p})[p^\infty] \) may be finite or infinite (case by case).
3 Finiteness of torsion points in the global case

In this section we line up some known facts about the finiteness of torsion points of abelian variety A defined over an algebraic number field K. Fix an algebraic closure \bar{K} of K. Let K^{ab} be the maximal abelian extension of K in \bar{K}. For each positive integer m, we write $K(\mu_m)$ for the subfield of \bar{K} obtained by adjoining to K all m-th roots of unity. We denote $\bigcup_m K(\mu_m)$ by $K(\mu_\infty)$, where m runs through all positive integers. For example \mathbb{Q}^{ab} is equal to $\mathbb{Q}(\mu_\infty)$ by the theorem of Kronecker-Weber. For each prime number p, we write $K(\mu_p^{\infty})$ by the subfield of \bar{K} obtained by adjoining to K all p-power roots of unity.

In the cyclotomic case, the following theorem is known:

Theorem 3.1 (Imai [Im] and Serre [Se1]). The group $A(K(\mu_p^{\infty}))^{\text{tors}}$ is finite for any prime number p.

By influenced the Mazur’s paper [Maz], Imai and Serre proved the above theorem independently. As a general result of Theorem 3.1, Ribet proved that the following:

Theorem 3.2 (Ribet [Ri]). The group $A(K(\mu_\infty))^{\text{tors}}$ is finite.

We shall remark that the statement of this theorem is not true for the local case, that is, $A'(K'(\mu_\infty))^{\text{tors}}$ is infinite in many cases for some abelian variety A' over a p-adic field K' even if we assume that A' has good reduction over K' (this can be checked easily from Theorem 2.2).

There is more information about the relation with cyclotomic fields and the finiteness of torsion points. Let $\text{End}_K(A)$ be the ring of all endomorphisms of A defined over K. We write $\text{End}^0(A)$ for the finite-dimensional semisimple \mathbb{Q}-algebra $\text{End}_K(A) \otimes_{\mathbb{Z}} \mathbb{Q}$. By $\text{Lie}(A)$, we denote the tangent space to A at the origin. Consider the following conditions:

(i) there is a discrete valuation v on K such that A has potentially purely multiplicative reduction at v;

(ii) K does not contain a CM-field;

(iii) the Hodge group of A is semisimple;

(iv) the center F of $\text{End}^0(A)$ is a CM-field and the pair (A, F) is of Weil type, that is, the $F \otimes \mathbb{Q}$ K-module $\text{Lie}(A)$ is free.

Theorem 3.3 (Zarhin [Za3], Thm. 0.3). Assume that the abelian variety A and the number field K satisfy at least one of the conditions (i), (ii), (iii) and (iv) above. If the intersection of L and $K(\mu_\infty)$ is a finite extension of K, then $A(L)^{\text{tors}}$ is finite.

Zarhin has also proved that

Theorem 3.4 (Zarhin [Za1], Thm. 6). Assume the center of $\text{End}^0(A)$ is a direct sum of totally real number fields. If L contains only finitely many roots of unity, then $A(L)^{\text{tors}}$ is finite.

For the relation of the maximal abelian extension and the torsion part, next theorems are known:

Theorem 3.5 (Bogomolov). If the intersection of L and K^{ab} is a finite extension of K, then $A(L)^{\text{tors}}$ is finite.
This theorem is proved in Séminaire Delange-Pisot-Poitou, mai 1982, Paris. For this proof, see [Col].

We say that a simple abelian variety B over K of dimension d is of CM-type over K if $\text{End}^0(B)$ is a number field of dimension $2d$ over \mathbb{Q}. If A is of CM-type, then the torsion subgroups of $A(K)$ and $A(K^{ab})$ coincide ([ST]). In particular, the torsion part of $A(K^{ab})$ is infinite if A is of CM-type. In fact the converse is true;

Theorem 3.6 (Zarhin [Za1], Thm. 1). *If an abelian variety A over K is simple, then $A(K^{ab})_{\text{tors}}$ is finite if and only if A is not of CM-type over K. In general, $A(K^{ab})_{\text{tors}}$ is finite if and only if A does not contain non-zero simple abelian subvarieties over K of CM-type over K.*

Let ℓ be a prime number. The following theorems are related to ℓ-adic Lie extensions (e.g. the extension $K(A(\ell^\infty))$ over K).

Theorem 3.7 (Zarhin [Za2], Thm. 0.10). *Assume that L is an infinite Galois extension whose Galois group $\text{Gal}(L/K)$ is isomorphic to a compact ℓ-adic Lie group. Then
(1) the group $A(L)[p^\infty]$ is finite for any prime number p different from ℓ.
(2) If $A(L)[p^\infty]$ does not vanish for infinitely many primes p, then A is of CM-type over L.***

Theorem 3.8 (Greenberg [Gr], Prop. 1.2). *Let L be a Galois extension of K whose Galois group $\text{Gal}(L/K)$ is isomorphic to a ℓ-adic Lie group. Then $A(L)[p^\infty]$ is finite if one of the following conditions is satisfied.
(1) There exists a nonarchimedian prime η of K not lying over p such that the corresponding residue field k_η is finite.
(2) The Lie algebra $\text{Lie}(\text{Gal}(L/K))$ is solvable, A has potential ordinary good reduction at all primes of L lying above p, and the residue field k_η at η is finite for all primes η of K lying above p.
(3) The Lie algebra $\text{Lie}(\text{Gal}(L/K))$ is semisimple, that is, it is a direct product of simple, non-abelian Lie algebras.*

Let v be a finite place of K. For any finite extension K' of K and any finite place v' of K' above v, we denote the completion of K' at v' by K'_v. More generally, for any algebraic extension L and any place w above v, we denote

$$L_w := \bigcup_{K'} K'_v,$$

where K' runs through all the finite extensions of K in L and v' is the unique place of K' under w. Note that the residue field k_{L_w} of L_w is $\bigcup_{K'} k_{K'_v}$.

As corollaries of Thm. 2.2, we can see the “global cases” below immediately.

Corollary 3.9. *Let K, L, A be as above. Assume that there exist places v of K above p and w_∞ of $L(\mu_p^\infty)$ above v satisfying the following properties:
(i) The residue field k_{w_∞} of $L(\mu_p^\infty)$ at w_∞ is a potential prime-to-p extension of the residue field k_v of K at v.
(ii) A has potential ordinary good reduction at v.
Then $A(L)[p^\infty]$ is finite.*
Corollary 3.10. Let K, L, A be as above. Assume that $L(\mu_p^{\infty})$ is a Galois extension of K, and there exist places v of K above p and w_{∞} of $L(\mu_p^{\infty})$ above v satisfying the following properties:

(i) The residue field $k_{w_{\infty}}$ of $L(\mu_p^{\infty})$ at w_{∞} is finite.
(ii) A has potential ordinary good reduction at v.

Then $A(L)_{\text{tors}}$ is finite.

If we always assume that L contains all p-power roots of unity, these corollaries are generalizations of the result of Greenberg given in the above.

References

