A note on Galois cohomology of algebraic integers (Abstract)

Takashi Ono
The Johns Hopkins University
October 10, 2008

1 $H^1(\mathfrak{g}, \mathcal{O}_k)$

Let k/\mathbb{Q} be a finite Galois extension of degree d. Let $\mathfrak{g} = \text{Gal}(k/\mathbb{Q})$. Let \mathcal{O}_k be the ring of integers of k. We want to express the the number $h_k = |H^1(\mathfrak{g}, \mathcal{O}_k)|$ in terms of the number of solutions of certain system of congruences over the finite ring $\mathbb{Z}/d\mathbb{Z}$.

To be more precise, let us express an element $\xi \in \mathcal{O}_k$ as

$$\xi = x_1\omega_1 + \cdots + x_d\omega_d = \Omega x, \quad \Omega = (\omega_1, \cdots, \omega_d),$$

with

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in \mathbb{Z}^d.$$

Then

$$^\sigma \xi = ^\sigma \Omega x, \quad \sigma \in \mathfrak{g}.$$

If we define a unimodular matrix A_σ by

$$^\sigma \Omega = \Omega A_\sigma,$$

(2)
then, we have
\[A_{\sigma\tau} = A_{\sigma}A_{\tau}, \quad \sigma, \tau \in g. \]
In other words,
\[A: \sigma \mapsto A_{\sigma} \in GL_d(\mathbb{Z}) \quad (3) \]
is an integral representation of the Galois group \(g \) of degree \(d = [k : Q] \).

We obtain the following

Theorem 1 Notations being as above, let \(\nu_k \) be the number of solutions \(x \in \mathbb{Z}^d \) of the congruence \(A_{\sigma}x \equiv x \mod d \forall \sigma \in g \), then \(dh = \nu_k \).

To prove Th.1, the set which is defined naively by
\[\Xi_k = \{ \xi \in \mathcal{O}_k; \quad ^{\sigma}\xi \equiv \xi \mod d, \forall \sigma \in g \} \quad (4) \]
plays a basic role. This is a \(\mathbb{Z} \)-module in \(\mathcal{O}_k \), containing \(\mathbb{Z} \) and is \(g \)-stable.

For each \(\xi \in \Xi_k \) and \(\sigma \in g \), we see that the element \(t(\xi)_{\sigma} = (\xi - ^{\sigma}\xi)/d \) induces a homomorphism \(t \) of \(\Xi_k \) onto the group of 1-cocycles for \((g, \mathcal{O}_k) \) so that
\[\Xi_k/\mathbb{Z} \approx Z^1(g, \mathcal{O}_k). \quad (5) \]

2 System \((g, (G, M))\)

As in 1, let \(K/Q \) be a finite Galois extension with the Galois group \(g \). As the group \(G \) we take the additive group of the ring \(\mathcal{O}_k \) and as the \(G \)-module \(M \), we consider the direct sum \(M = \mathcal{O}_k + \mathcal{O}_k = (\mathcal{O}_k)^2 \). With the natural actions of \(G \) on \(M \) and \(g \) on \((G, M) \), we obtain a **system** \((g, (G, M))\) (cf. T. Ono, Gauss sums and Poincaré sums(a sketch), Appendix 3, Nippon-Hyoronsha, Tokyo, 2008). The action of \(G \) on \(M \) may be written in matrices like
\[g \circ x = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + tx_2 \\ x_2 \end{pmatrix}. \]

Hence we can use matrices
\[C_{\sigma} = \begin{pmatrix} 1 & t_{\sigma} \\ 0 & 1 \end{pmatrix}, \quad \sigma \in g \]
as a cocycle \(\in Z^1(g, \mathcal{O}_k) \). In view of (5), we can write
\[C_{\sigma} = A(\xi) .^{\sigma} A(\xi)^{-1} \quad \text{for some} \quad \xi \in \Xi_k. \quad (6) \]
where the matrix

\[
A(\xi) = \begin{bmatrix} 1 & \xi/d \\ 0 & 1 \end{bmatrix}.
\]

For the cocycle \(C \), we associate a \(\mathbb{Z} \)-module

\[
M_C = \{ x \in M; \ C_\sigma x = x, \ \sigma \in \mathfrak{g} \}.
\]

and its submodule

\[
P_C = \{ y = p_C(x), \ x \in M \},
\]

where

\[
p_C(x) = \sum \tau C_\tau x.
\]

We know that the quotient \(M_C/P_C \) depends only on the cohomology class \(\gamma = [C] \) and is identified with the module \(\bar{H}^0(\mathfrak{g}, O_k)\gamma \). The determination of the index \(i_\gamma(\mathfrak{g}, M) = [M_C : P_C] \) is a basic theme inspired by Poincaré. In this context, we obtain the following

Theorem 2 Notations being as above, we find

\[
i_\gamma(\mathfrak{g}, M) = |\bar{H}^0(\mathfrak{g}, A(\xi)^{-1} M)|.
\]