Indivisibility of class numbers of imaginary quadratic function fields

Dongho Byeon

Abstract. We show that for an odd prime number l, there are infinitely many imaginary quadratic extensions F over the rational function field $K = \mathbb{F}_q(T)$ such that the class number of F is not divisible by l. This work is published in Acta Arithmetica 132.4 (2008).

Let p be an odd prime number, q a power of p and \mathbb{F}_q the finite field with cardinality q. Let T be an indeterminate and $K = \mathbb{F}_q(T)$ the rational function field.

Let l be an odd prime number. Friesen [3], Cardon and Murty [1], respectively, proved that there are infinitely many real and imaginary, respectively, quadratic extensions F over K such that the class number of F is divisible by l.

In [6], Kimura proved that there are infinitely many quadratic extensions F over K such that the class number of F is not divisible by 3. For an odd prime number l, Ichimura [5] constructed infinitely many imaginary quadratic extensions F over K such that the class number of F is not divisible by l, when the order of q mod l in the multiplicative group $(\mathbb{Z}/l\mathbb{Z})^*$ is odd or $l = p$.

In this talk, we shall show the following theorem.

Theorem 0.1 Let l be an odd prime number. Then there are infinitely many imaginary quadratic extensions F over K such that the class number of F is not divisible by l.

Theorem 0.1 is a function field analogue of Hartung’s work [4] on the imaginary quadratic number fields. To prove this theorem, following Hartung’s
idea in [4], we shall use the class number relation over function fields which
is developed by Yu [7].

References

[1] D. A. Cardon and M. R. Murty, Exponents of class groups of quadratic
407.

groups of curves over a finite field, Theorie des nombres (Quebec, PQ,

[3] C. Friesen, Class number divisibility in real quadratic function fields,

fields whose class numbers are not divisible by three, J. Number theory
6 (1976), 276–278.

[5] H. Ichimura, Quadratic function fields whose class numbers are not di-

[6] I. Kimura, On class numbers of quadratic extensions over function fields,

Department of Mathematics, Seoul National University
Seoul 151-747, Korea
E-mail: dlhbyeon@math.snu.ac.kr