積分の台形公式

\[
\int_a^b f(x)dx \text{ を近似的に求める公式の一つである台形公式の概略を説明する。}
\]

\([a, b]\) を \(n\) 等分をし、各幅を \(h = (b - a)/n\) と置く (等分割をしない方法もある)。
以下の図は \(n = 4\) の場合である。このとき、\(x_i = a + ih\) とその分点を書く。

このとき、4 点 \((x_i, 0), (x_i, f(x_i)), (x_{i+1}, 0), (x_{i+1}, f(x_{i+1}))\) を結ぶ図形は台形
となり、この面積は

\[
\frac{(x_{i+1} - x_i)(f(x_i) + f(x_{i+1}))}{2} = \frac{h(f(x_i) + f(x_{i+1}))}{2}
\]

そして、この小台形全て総和をした \(T_n\) を (複合) 台形公式という。

\[
T_n = \sum_{i=0}^{n-1} h(f(x_i) + f(x_{i+1}))
\]

台形公式

![台形公式の図](image)

Figure 1: \(\int_a^b f(x)dx\) の求め方

実際のプログラムを作成するときは、\(T_n\) を変形した次式を用いる。

\[
T_n = \frac{h(f(x_0) + f(x_n))}{2} + h \sum_{i=1}^{n-1} f(x_i)
\] (1)